Passive Micromixers with Interlocking Semi-Circle and Omega-Shaped Modules: Experiments and Simulations
نویسندگان
چکیده
This study presents experiments and computational simulations of single-layer passive micromixer designs. The proposed designs consist of chains of interlocking semicircles and omega-shaped mixing modules. The performance of the new designs is compared with the concentric spiral channel configuration. The micromixers are intended to be integrated into a lab on chip (LOC) micro-system that operates under continuous flow conditions. The purpose behind the multi-curvature in these designs is the introduction of Dean vortices in addition to molecular diffusion in order to enhance the mixing performance. The micromixers were fabricated in PDMS (Polydimethylsiloxane) and bonded to a glass substrate. A three-dimensional computational model of micromixers was carried out using Fluent ANSYS. In experiments, the mixing of a 1 g/L fluorescein isothiocyanate diluted in distilled water was observed and photographed using a charge-coupled device (CCD) microscopic camera. The obtained images were processed to determine the mixing intensity at different Reynolds numbers. The standard deviation (σ) of the fluorescence indicates the mixing completeness, which was calculated along the width of the channel at various locations downstream from the channel inlet. The value of σ = 0.5 indicates unmixed streams and 0 is for complete mixing. It is found that the two new designs have a standard deviation of nearly 0.05. Additionally, complete mixing was observed at the channel outlet as demonstrated by OPEN ACCESS Micromachines 2015, 6 954 the fluorescence images and the numerical results. However, the location of complete mixing at different positions depends on the Reynolds number, which varies between 0.01 and 50. Good agreement was found between the experiment and the numerical results. A correlation to predict the length scale where complete mixing can be achieved is given in terms of the radius of curvature, the mixing module, and the Reynolds number.
منابع مشابه
Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles
Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...
متن کاملThe effect of flow parameters on mixing degree of a three dimensional rhombus micromixer with obstacles in the middle of the mixing channel using oscillatory inlet velocities
The previous studies of authors on passive micromixers indicated that the micromixers dividing the flow to several layers, such as rhombus micromixers and micromixers with obstacles in the middle of the mixing channel, have higher mixing degree than other types. Also, using of oscillatory inlet velocities is an active method to enhance the mixing efficiency of micromixers. Therefore, in this st...
متن کاملDesign and fabrication of an effective micromixer through passive method
Micromixer is a significant component of microfluidics particularly in lab-on-chip applications so that there has been a growing need for design and fabrication of micromixers with a shorter length and higher efficiency. Despite most of the passive micromixers that suffer from long mixing path and complicated geometry to increase the efficiency, our novel design suggests a highly efficient micr...
متن کاملMicromixing within microfluidic devices.
Micromixing is a crucial process within microfluidic systems such as micro total analysis systems (μTAS). A state-of-art review on microstructured mixing devices and their mixing phenomena is given. The review first presents an overview of the characteristics of fluidic behavior at the microscale and their implications in microfluidic mixing processes. According to the two basic principles expl...
متن کاملMicromixers — a review
This review reports the progress on the recent development of micromixers. The review first presents the different micromixer types and designs. Micromixers in this review are categorized as passive micromixers and active micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, passive micromixers will be the focus of this review. Next,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micromachines
دوره 6 شماره
صفحات -
تاریخ انتشار 2015